Role of Macro and Micro Nutrients

 Role of Macro and Micro Nutrients 

Essential elements perform several functions. They participate in various metabolic processes in the plant cells such as permeability of cell membrane, maintenance of osmotic concentration of cell sap, electron transport systems, buffering action, enzymatic activity and act as major constituents of macromolecules and co-enzymes.

 Various forms and functions of essential nutrients elements are given below -

Nitrogen : This is the essential nutrient element required by plants in the greatest amount. It is absorbed mainly as NO, though some are also taken NO, or NH". Nitrogen is required by all parts of a plant, particularly meristematic tissues and the metabolically active cells. Nitrogen is one of the major constituents of proteins, nucleic acids, vitamins and hormones.

Phosphorous : Phosphorus is absorbed by the plants from soil in the form phosphate fons (either as H,PO or HPO). Phosphorus is a constituent of cell membranes, certain proteins, all nucleic acids and nucleotides, and is required for all phosphorylation reactions.

Potassium : It is absorbed as potassium ion (K'). In plants, this is required more abundant sunt helps the meristematic tissues, bus required root tips. Potassium helps to maintain an anion-cation balance in cells and is involved in protein synthesis, opening and closing of stomata, activation of enzymes and in the maintenance of the turgidity of cells.

Calcium : Plant absorbs calcium from the soil in the form of calcium ions . Calcium is required by meristematic and differentiating tissues. During cell division it is used in the synthesis of cell wall, particularly as calcium pectate in the middle lamella. It is also needed during the formation of mitotic spindle. It accumulates in older leaves. It is involved the normal functioning of the cell membranes. It activates certain enzymes and plays an important role in regulating metabolic activities.

Magnesium : It is absorbed by plants in the form of divalent Mg". It activates the enzymes of respiration, photosynthesis and are involved in synthesis of DNA and RNA. Magnesium is a constituent of the ring structure of chlorophyll and helps to maintain the ribosome structure.

Sulphur : Plants obtain sulphur in the form of sulphate (SO). Sulphur is present in two amino acids - cysteine and methionine and is the main constituent of several coenzymes, vitamins (thiamine, biotin, Coenzyme A) and ferredoxin.

Iron : Plants obtain iron in the form of ferric ions (Fe). It is required in arger amounts in comparison to other micronutrients. It is an important constituent of proteins involved in the transfer of electrons like ferredoxin ad cytochromes. It is reversibly oxidised from Fe* to Fe" during electron ansfer.It activates is catalase enzyme, and is essential for the formation of Chlorophyll.

Manganese : It is absorbed in the form of manganous ions (Mn). It The beled in photosynthesis, respiration and nitrogen metabolism. The best defined function of manganese is in the splitting of water to liberate oxygen during photosynthesis. 

Zinc : Plants obtain zine as Zn² ions. It activates various enzymes, especially carboxylases. It is also needed in the synthesis of auxin. Copper: It is absorbed as cupric ions (Cu²*). It is essential for the overall metabolism in plants. Like iron, it is associated with certain enzymes involved in redox reactions and is reversibly oxidised from Cu to Cu².

Boron : It is absorbed as BO or BO. Boron is required for uptake and utilisation of Ca², membrane functioning, pollen germination, cell elongation, cell differentiation and carbohydrate translocation.

Molybdenum : Plants obtain it in the form of molybdate ions (MoO2). It is a component of several enzymes, including nitrogenase and nitrate reductase both of which participate in nitrogen metabolism.

Chlorine : It is absorbed in the form of chloride anion (Cl). Along with Na and K, it helps in determining the solute concentration and the anion- cation balance in cells. It is essential for the water-splitting reaction in photosynthesis, a reaction that leads to oxygen evolution.

Thanks for Reading My Article ☺️ . If You Have Any Problem Then Contact Me.